Copied to
clipboard

G = C22×C7⋊D4order 224 = 25·7

Direct product of C22 and C7⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×C7⋊D4, C242D7, C234D14, D143C23, C14.15C24, Dic72C23, (C2×C14)⋊9D4, C143(C2×D4), C73(C22×D4), (C2×C14)⋊3C23, (C23×C14)⋊4C2, (C23×D7)⋊5C2, C2.15(C23×D7), C222(C22×D7), (C22×C14)⋊7C22, (C22×Dic7)⋊9C2, (C22×D7)⋊7C22, (C2×Dic7)⋊11C22, SmallGroup(224,188)

Series: Derived Chief Lower central Upper central

C1C14 — C22×C7⋊D4
C1C7C14D14C22×D7C23×D7 — C22×C7⋊D4
C7C14 — C22×C7⋊D4
C1C23C24

Generators and relations for C22×C7⋊D4
 G = < a,b,c,d,e | a2=b2=c7=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 862 in 236 conjugacy classes, 105 normal (11 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C2×C4, D4, C23, C23, C23, D7, C14, C14, C14, C22×C4, C2×D4, C24, C24, Dic7, D14, D14, C2×C14, C2×C14, C22×D4, C2×Dic7, C7⋊D4, C22×D7, C22×D7, C22×C14, C22×C14, C22×C14, C22×Dic7, C2×C7⋊D4, C23×D7, C23×C14, C22×C7⋊D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C7⋊D4, C22×D7, C2×C7⋊D4, C23×D7, C22×C7⋊D4

Smallest permutation representation of C22×C7⋊D4
On 112 points
Generators in S112
(1 64)(2 65)(3 66)(4 67)(5 68)(6 69)(7 70)(8 57)(9 58)(10 59)(11 60)(12 61)(13 62)(14 63)(15 78)(16 79)(17 80)(18 81)(19 82)(20 83)(21 84)(22 71)(23 72)(24 73)(25 74)(26 75)(27 76)(28 77)(29 92)(30 93)(31 94)(32 95)(33 96)(34 97)(35 98)(36 85)(37 86)(38 87)(39 88)(40 89)(41 90)(42 91)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 99)(51 100)(52 101)(53 102)(54 103)(55 104)(56 105)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(57 92)(58 93)(59 94)(60 95)(61 96)(62 97)(63 98)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 91)(71 106)(72 107)(73 108)(74 109)(75 110)(76 111)(77 112)(78 99)(79 100)(80 101)(81 102)(82 103)(83 104)(84 105)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 71 8 78)(2 77 9 84)(3 76 10 83)(4 75 11 82)(5 74 12 81)(6 73 13 80)(7 72 14 79)(15 64 22 57)(16 70 23 63)(17 69 24 62)(18 68 25 61)(19 67 26 60)(20 66 27 59)(21 65 28 58)(29 99 36 106)(30 105 37 112)(31 104 38 111)(32 103 39 110)(33 102 40 109)(34 101 41 108)(35 100 42 107)(43 92 50 85)(44 98 51 91)(45 97 52 90)(46 96 53 89)(47 95 54 88)(48 94 55 87)(49 93 56 86)
(1 85)(2 91)(3 90)(4 89)(5 88)(6 87)(7 86)(8 92)(9 98)(10 97)(11 96)(12 95)(13 94)(14 93)(15 106)(16 112)(17 111)(18 110)(19 109)(20 108)(21 107)(22 99)(23 105)(24 104)(25 103)(26 102)(27 101)(28 100)(29 57)(30 63)(31 62)(32 61)(33 60)(34 59)(35 58)(36 64)(37 70)(38 69)(39 68)(40 67)(41 66)(42 65)(43 78)(44 84)(45 83)(46 82)(47 81)(48 80)(49 79)(50 71)(51 77)(52 76)(53 75)(54 74)(55 73)(56 72)

G:=sub<Sym(112)| (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,85)(37,86)(38,87)(39,88)(40,89)(41,90)(42,91)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(57,92)(58,93)(59,94)(60,95)(61,96)(62,97)(63,98)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,71,8,78)(2,77,9,84)(3,76,10,83)(4,75,11,82)(5,74,12,81)(6,73,13,80)(7,72,14,79)(15,64,22,57)(16,70,23,63)(17,69,24,62)(18,68,25,61)(19,67,26,60)(20,66,27,59)(21,65,28,58)(29,99,36,106)(30,105,37,112)(31,104,38,111)(32,103,39,110)(33,102,40,109)(34,101,41,108)(35,100,42,107)(43,92,50,85)(44,98,51,91)(45,97,52,90)(46,96,53,89)(47,95,54,88)(48,94,55,87)(49,93,56,86), (1,85)(2,91)(3,90)(4,89)(5,88)(6,87)(7,86)(8,92)(9,98)(10,97)(11,96)(12,95)(13,94)(14,93)(15,106)(16,112)(17,111)(18,110)(19,109)(20,108)(21,107)(22,99)(23,105)(24,104)(25,103)(26,102)(27,101)(28,100)(29,57)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,64)(37,70)(38,69)(39,68)(40,67)(41,66)(42,65)(43,78)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,71)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)>;

G:=Group( (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,85)(37,86)(38,87)(39,88)(40,89)(41,90)(42,91)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(57,92)(58,93)(59,94)(60,95)(61,96)(62,97)(63,98)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,71,8,78)(2,77,9,84)(3,76,10,83)(4,75,11,82)(5,74,12,81)(6,73,13,80)(7,72,14,79)(15,64,22,57)(16,70,23,63)(17,69,24,62)(18,68,25,61)(19,67,26,60)(20,66,27,59)(21,65,28,58)(29,99,36,106)(30,105,37,112)(31,104,38,111)(32,103,39,110)(33,102,40,109)(34,101,41,108)(35,100,42,107)(43,92,50,85)(44,98,51,91)(45,97,52,90)(46,96,53,89)(47,95,54,88)(48,94,55,87)(49,93,56,86), (1,85)(2,91)(3,90)(4,89)(5,88)(6,87)(7,86)(8,92)(9,98)(10,97)(11,96)(12,95)(13,94)(14,93)(15,106)(16,112)(17,111)(18,110)(19,109)(20,108)(21,107)(22,99)(23,105)(24,104)(25,103)(26,102)(27,101)(28,100)(29,57)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,64)(37,70)(38,69)(39,68)(40,67)(41,66)(42,65)(43,78)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,71)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72) );

G=PermutationGroup([[(1,64),(2,65),(3,66),(4,67),(5,68),(6,69),(7,70),(8,57),(9,58),(10,59),(11,60),(12,61),(13,62),(14,63),(15,78),(16,79),(17,80),(18,81),(19,82),(20,83),(21,84),(22,71),(23,72),(24,73),(25,74),(26,75),(27,76),(28,77),(29,92),(30,93),(31,94),(32,95),(33,96),(34,97),(35,98),(36,85),(37,86),(38,87),(39,88),(40,89),(41,90),(42,91),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,99),(51,100),(52,101),(53,102),(54,103),(55,104),(56,105)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(57,92),(58,93),(59,94),(60,95),(61,96),(62,97),(63,98),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,91),(71,106),(72,107),(73,108),(74,109),(75,110),(76,111),(77,112),(78,99),(79,100),(80,101),(81,102),(82,103),(83,104),(84,105)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,71,8,78),(2,77,9,84),(3,76,10,83),(4,75,11,82),(5,74,12,81),(6,73,13,80),(7,72,14,79),(15,64,22,57),(16,70,23,63),(17,69,24,62),(18,68,25,61),(19,67,26,60),(20,66,27,59),(21,65,28,58),(29,99,36,106),(30,105,37,112),(31,104,38,111),(32,103,39,110),(33,102,40,109),(34,101,41,108),(35,100,42,107),(43,92,50,85),(44,98,51,91),(45,97,52,90),(46,96,53,89),(47,95,54,88),(48,94,55,87),(49,93,56,86)], [(1,85),(2,91),(3,90),(4,89),(5,88),(6,87),(7,86),(8,92),(9,98),(10,97),(11,96),(12,95),(13,94),(14,93),(15,106),(16,112),(17,111),(18,110),(19,109),(20,108),(21,107),(22,99),(23,105),(24,104),(25,103),(26,102),(27,101),(28,100),(29,57),(30,63),(31,62),(32,61),(33,60),(34,59),(35,58),(36,64),(37,70),(38,69),(39,68),(40,67),(41,66),(42,65),(43,78),(44,84),(45,83),(46,82),(47,81),(48,80),(49,79),(50,71),(51,77),(52,76),(53,75),(54,74),(55,73),(56,72)]])

C22×C7⋊D4 is a maximal subgroup of
C24.12D14  C24.13D14  C23.45D28  C24.14D14  C232D28  C23.16D28  C23.28D28  C24.21D14  C24.24D14  C24.27D14  C233D28  C242D14  C243D14  C24.33D14  C24.34D14  C247D14  C22×D4×D7
C22×C7⋊D4 is a maximal quotient of
C24.72D14  C247D14  C24.41D14  C24.42D14  C14.442- 1+4  C14.452- 1+4  C28.C24  C14.1042- 1+4  C14.1052- 1+4  (C2×C28)⋊15D4  C14.1452+ 1+4  C14.1462+ 1+4  C14.1072- 1+4  (C2×C28)⋊17D4  C14.1082- 1+4  C14.1482+ 1+4  D28.32C23  D28.33C23  D28.34C23  D28.35C23

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A4B4C4D7A7B7C14A···14AS
order12···222222222444477714···14
size11···1222214141414141414142222···2

68 irreducible representations

dim111112222
type++++++++
imageC1C2C2C2C2D4D7D14C7⋊D4
kernelC22×C7⋊D4C22×Dic7C2×C7⋊D4C23×D7C23×C14C2×C14C24C23C22
# reps111211432124

Matrix representation of C22×C7⋊D4 in GL5(𝔽29)

280000
028000
002800
00010
00001
,
10000
028000
002800
000280
000028
,
10000
0252800
022200
000428
000528
,
280000
0141100
061500
000724
0001022
,
10000
0141100
061500
000251
000144

G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,25,2,0,0,0,28,22,0,0,0,0,0,4,5,0,0,0,28,28],[28,0,0,0,0,0,14,6,0,0,0,11,15,0,0,0,0,0,7,10,0,0,0,24,22],[1,0,0,0,0,0,14,6,0,0,0,11,15,0,0,0,0,0,25,14,0,0,0,1,4] >;

C22×C7⋊D4 in GAP, Magma, Sage, TeX

C_2^2\times C_7\rtimes D_4
% in TeX

G:=Group("C2^2xC7:D4");
// GroupNames label

G:=SmallGroup(224,188);
// by ID

G=gap.SmallGroup(224,188);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,579,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^7=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽